ar X iv : 0 80 4 . 08 15 v 1 [ m at h . R T ] 4 A pr 2 00 8 LARGE TILTING MODULES AND REPRESENTATION TYPE LIDIA

نویسنده

  • JAN TRLIFAJ
چکیده

We study finiteness conditions on large tilting modules over arbitrary rings. We then turn to a hereditary artin algebra R and apply our results to the (infinite dimensional) tilting module L that generates all modules without preprojective direct summands. We show that the behaviour of L over its endomorphism ring determines the representation type of R. A similar result holds true for the (infinite dimensional) tilting module W that generates the divisible modules. Finally, we extend to the wild case some results on Baer modules and torsion-free modules proven in [5] for tame hereditary algebras.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : h ep - t h / 02 03 12 8 v 1 1 4 M ar 2 00 2 Boundary Structure and Module Decomposition of the Bosonic

The Z2 bosonic orbifold models with compactification radius R 2 = 1/2k are examined in the presence of boundaries. Demanding the extended algebra characters to have definite conformal dimension and to consist of an integer sum of Virasoro characters, we arrive at the right splitting of the partition function. This is used to derive a free field representation of a complete, consistent set of bo...

متن کامل

ar X iv : m at h / 03 10 31 4 v 3 [ m at h . R T ] 1 9 A ug 2 00 4 GEOMETRIC AND COMBINATORIAL REALIZATIONS OF CRYSTAL GRAPHS

For irreducible integrable highest weight modules of the finite and affine Lie algebras of type A and D, we define an isomorphism between the geometric realization of the crystal graphs in terms of irreducible components of Nakajima quiver varieties and the combinatorial realizations in terms of Young tableaux and Young walls. For type A (1) n , we extend the Young wall construction to arbitrar...

متن کامل

ar X iv : m at h / 03 10 31 4 v 2 [ m at h . R T ] 1 6 N ov 2 00 3 GEOMETRIC AND COMBINATORIAL REALIZATIONS OF CRYSTAL GRAPHS

For irreducible integrable highest weight modules of the finite and affine Lie algebras of type A and D, we define an isomorphism between the geometric realization of the crystal graphs in terms of irreducible components of Nakajima quiver varieties and the combinatorial realizations in terms of Young tableaux and Young walls. For type A (1) n , we extend the Young wall construction to arbitrar...

متن کامل

ar X iv : 0 80 3 . 33 49 v 1 [ m at h . Q A ] 2 3 M ar 2 00 8 DIFFERENTIAL OPERATORS AND CHEREDNIK ALGEBRAS

We establish a link between two geometric approaches to the representation theory of rational Cherednik algebras of type A: one based on a noncommutative Proj construction [GS1]; the other involving quantum hamiltonian reduction of an algebra of differential operators [GG]. In the present paper, we combine these two points of view by showing that the process of hamiltonian reduction intertwines...

متن کامل

ar X iv : h ep - t h / 03 11 03 9 v 2 2 3 M ay 2 00 4 Logarithmic lift of the ŝu ( 2 ) − 1 / 2 model

This paper carries on the investigation of the non-unitary su(2) −1/2 WZW model. An essential tool in our first work on this topic was a free-field representation, based on a c = −2 ηξ ghost system, and a Lorentzian boson. It turns out that there are several 'versions' of the ηξ system, allowing different su(2) −1/2 theories. This is explored here in details. In more technical terms, we conside...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008